Silicon and III-V compound nanotubes: Structural and electronic properties

نویسندگان

  • E. Durgun
  • S. Tongay
چکیده

Unusual physical properties of single-wall carbon nanotubes have started a search for similar tubular structures of other elements. In this paper, we present a theoretical analysis of single-wall nanotubes of silicon and group-III-V compounds. Starting from precursor graphenelike structures we investigated the stability, energetics, and electronic structure of zigzag and armchair tubes using the first-principles pseudopotential plane wave method and finite temperature ab initio molecular dynamics calculations. We showed that !n ,0" zigzag and !n ,n" armchair nanotubes of silicon having n!6 are stable but those with n"6 can be stabilized by internal or external adsorption of transition metal elements. Some of these tubes have a magnetic ground state leading to spintronic properties. We also examined the stability of nanotubes under radial and axial deformation. Owing to the weakness of radial restoring force, stable Si nanotubes are radially soft. Undeformed zigzag nanotubes are found to be metallic for 6#n#11 due to the curvature effect; but a gap starts to open for n !12. Furthermore, we identified stable tubular structures formed by the stacking of Si polygons. We found AlP, GaAs, and GaN !8,0" single-wall nanotubes stable and semiconducting. Our results are compared with those of single-wall carbon nanotubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes

Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission ...

متن کامل

First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes

Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission ...

متن کامل

Structural stability and electronic properties of sp3 type silicon nanotubes.

A density functional theory study of the structural and electronic properties and relative stability of narrow hydrogen passivated sp(3) silicon nanotubes of different growth orientations is presented. All nanotubes studied and their corresponding wire structures are found to be meta-stable with the wires being more energetically stable. Silicon nanotubes show a dramatic bandgap increase of up ...

متن کامل

Fluorination Effects on the Structural Stability and Electronic Properties of sp‐type Silicon Nanotubes

A density functional theory study of the structural and electronic properties and relative stability of fluorinated sp silicon nanotubes and their corresponding silicon nanowires built along various crystallographic orientations is presented. The structural stability is found to increase linearly with fluorine surface coverage, and for coverages exceeding 25%, the tubular structures are predict...

متن کامل

Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound

Density functional theory (DFT) calculations were performed to investigate the effects of a carbon nanotube (CNT) on the properties of the fluorouracil (F-Uracil) anticancer drug. To achieve the purpose, a molecular model including both of F-Uracil and CNT molecules was created to represent the CNT@F-Uracil compound. The optimized parameters indicated that the new compound could show new proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015